
Wisecracker™
A high performance distributed cryptanalysis

framework

A Technical White Paper

October 30 2012

Written by
Vikas N Kumar

Introduction

Cryptanalysis can be performed in various ways such as by using number theory to
discover flaws in existing cryptographic algorithms or by using brute force to break the
cryptography by using numerous computers. Discovering number theory related flaws
might be near impossible to find or might need a Ph.D. in mathematics, but using brute
force might make it easy to break such algorithms. Wisecracker aims to tackle
cryptanalysis by using the brute force method.

However, brute force cryptanalysis, depending on the algorithm, might still need large
scale supercomputers or massively parallel clusters of computers to be able to work in a
reasonable amount of time that is countably finite. Some algorithms might take months or
years to crack while some might take minutes or seconds. Cracking algorithms that might
take weeks or months is possible by those who have access to supercomputers and

massively parallel clusters such as the researchers at government agencies like the NSA
and big corporations like Google®, Facebook® and Twitter®. An average or hobbyist
security researcher does not have access to such computer systems and is not able to
perform such research at a low cost. Wisecracker aims to solve this problem for
researchers with less resources by optimizing with intelligent software.

Wisecracker consists of a framework for a researcher to use the computational power of
commercial off-the-shelf (COTS) graphical processing units (GPUs) across multiple
multi-processor and multi-core systems by using OpenCL and MPI in tandem. Currently,
a sample application to crack the MD5 one-way cryptographic hashes for strings of 6-8
printable ASCII characters is provided as a demonstration of how to use the framework.
These kinds of strings are used for storing passwords by web developers. More
applications such as for cracking SHA-1, SHA-2 and other cryptographic algorithms will
be added as time progresses.

With a software framework like Wisecracker a security researcher can leverage the
technology of distribution across multiple heterogeneous GPUs and CPUs already
provided as the core of the framework, and focus on the implementation of the
cryptographic algorithms. The framework has a C and C++ API, and the user has to
implement the portion of the code that will be distributed on the GPUs and/or CPUs
using OpenCL.

Wisecracker is supported on Linux, Windows and Mac OSX operating systems and
depends on OpenCL and optionally MPI for distribution across multiple systems.

This document gives a high level description of the capabilities and internal designs of
Wisecracker and does not describe the API itself. For the API, please refer to the API
documentation provided separately. An example application for cracking MD5
checksums for 6-8 character strings will be explained in this document in the later
sections.

Distribution Across Systems

Heterogeneous and homogeneous clusters of computers with or without GPUs can be
handled by Wisecracker, as long as the appropriate OpenCL libraries have been installed.
OpenCL implementations provided by Intel®, AMD®, NVIDIA® and Apple® are
supported. Within a single system the framework uses OpenCL to distribute the workload
and across systems it uses MPI to distribute the workload. Testing for Wisecracker has
been done with the OpenMPI implementation of MPI, although any standards compliant
MPI implementation, such as MPICH, should work just as well.

The notion of a system for Wisecracker is a single computer which might have one or
more GPUs and has one or more CPUs. If the system has a CPU version of OpenCL

installed such as that of Intel, AMD or Apple, then the system will use the CPUs for
computing. If the system has the OpenCL implementation of GPUs installed such as that
of AMD or NVIDIA, then the system will use the GPUs for computing. If the system has
both the CPU and GPU implementations installed, it will use any or all depending on
how the user makes the device selection in the API.

If the user has only one system, he does not need MPI as a dependency to use
Wisecracker. A security researcher might have various systems each with different
computational capabilities, some with multiple CPUs and some with a combination of
CPUs and GPUs. With this framework, they can leverage all the possible systems they
have for performing their analysis. The beauty of OpenCL is that it is designed to be
cross platform across a variety of architectures and hence Wisecracker can run on any
system that supports OpenCL.

Nowadays, cloud computing companies like Amazon® provide high end GPU computing
resources which can also be used by a security researcher for just a few dollars an hour.
Wisecracker is supported on the Amazon EC2® GPU cluster virtual machines (VM) out
of the box. It comes with a simple setup script that can setup the Amazon GPU VM with
all the pre-requisites needed for Wisecracker and applications built with Wisecracker to
run.

Let us take the example of the sample application provided with the Wisecracker source
code called wisecrackmd5. This application takes an MD5 cryptographic checksum
that has been generated by a character string that is of 6-8 characters in length and finds
the string that has generated the MD5 checksum. Many websites store their passwords as
MD5 checksums and this application can be used to reverse an MD5 checksum into a
password.

Consider the case of a 6-character password that might have any of the 94 printable
ASCII characters in it, i.e. alphabets from A-Z in both upper and lower case, digits from
0-9 and all the remaining special characters like punctuation marks. For a 6-character
password using 94 characters, the number of possible tries that will generate the given
MD5 checksum are 946 which is 689,869,781,056 or approximately 690 billion
combinations!

On a single system with 2 Intel Xeon 5030 processors with 8 cores this takes on an
average about 7 hours to reverse the MD5 sum into the source string.
However, using the powerful NVIDIA GPUs on a single Amazon's EC2 cluster VM takes
about 20 minutes to reverse. When Wisecracker is built with MPI support, the user can
run this application on 2 Amazon EC2 cluster VMs and it takes about 3 minutes to
reverse on average! That is a near exponential decline with just twice the power.

This happens because the task distribution uses a divide-and-conquer model between
systems to distribute the tasks. When each system receives its task range, it then uses a
round-robin task block distribution for each OpenCL device on that system based on the
device's compute capabilities provided by the OpenCL API (a product of the number of

compute units and work group size).

 Amazon's VMs have 2 GPUs each. When a single system is being used the tasks are
distributed in the range [1, 690billion] between 2 GPUs by dividing the range
into smaller blocks of size based on the product of the compute units and workgroup size.
So if a GPU's compute units are 32 in number and have a work group size of 2048, it gets
32 × 2048 task blocks to work on. So one by one each GPU will keep computing on it
successive task blocks that it is given until it finds the solution.

When you use 2 systems, the tasks are distributed between each system as the ranges
[1, 345billion] and (345billion, 690billion]. Once each system gets
its task range, it distributes work between its GPUs in a similar fashion as task blocks
based on compute units and work group size.

Let's say you want to recover the string z@bD1g and it might be in the index range
[345billion, 690billion]. If you were to run this on 1 Amazon GPU VM the
program will have to compute for [1, 345billion] range first and then get to the
(345billion, 690billion] range.

However, if you distribute this on 2 VMs you will hit upon the solution faster because the
second system is starting from 345 billion and you might not need to compute all the 345
billion possible values on each VM. You are saved from the needless computation of the
[1, 345billion] range in full as done in the single system operation.

Hence the 2 VMs give a bigger decline in time rather than 1 VM because of the way the
work is distributed for the MD5 example, wisecrackmd5.

On an average with different sets of strings the runtime drastically goes down because of
the fact that the search buckets are smaller and start at different points.

NOTE: We define average as the average time taken to extract the source string from the
MD5, and that the code running on the CPUs is the same OpenCL that will run on the
GPUs. Comparisons with highly optimized CPU code using SSE2 intrinsics has not been
done at this time.

As we can see, with the power of GPUs across multiple systems and the intelligent
distribution of tasks by Wisecracker we can exponentially reduce the time taken to try out
various combinations for MD5 reversing. This is true for any other algorithm as well
although the time taken might vary based on the number of combinations to be tried out
and the computational requirements of the algorithm itself per combination.

Domain Decomposition

The distribution of billions or trillions of combinations or tasks gets done by Wisecracker
which uses a master-slave model to distribute the workload across multiple GPUs and
CPUs. Figures 1 and 2 denote the distribution across GPUs and CPUs of a single system

and across multiple systems respectively.
Figure 1. Distribution across a single system with OpenCL

When an application is written using Wisecracker, it provides a set of callbacks for
Wisecracker's internal runtime, called executor, to invoke during execution. Some of
these callbacks inform Wisecracker about the number of tasks that Wisecracker has to
distribute. When running across multiple systems using MPI, the application runs copies
of itself (called slaves) on each of those systems. The initiating system is called the
master. Hence, there is an executor on each slave system communicating with the master
executor system. Note that on a single system there is no slave executor and the master
executor does all the required work in the same way a slave would perform.

Figure 2. Distribution across multiple systems with MPI and OpenCL

The master executor queries each slave system's details and gets the device information
about every system. Once the device information is retrieved from all the systems, the
master executor will then break up the tasks as per the capabilities of each slave system
and then inform each slave executor the task range they will be executing.

When a slave executor receives a task range, it divides it up between its multiple devices
and starts executing the workload by invoking the correct callback per device per range.
The execution is non-blocking and event based by using OpenCL events. When a task
range has completed execution, the results are communicated back to the master executor
which will then invoke the callbacks in the master application appropriately informing
the application that the results have arrived. This goes on until all the tasks have been
completed or until the master or any of the slaves call for a stop to the execution based on
certain conditions.

The domain decomposition is not very complex and depends on the compute capabilities
of the OpenCL devices on each system and the total number of tasks to be executed. The
user can always modify or customize the domain decomposition by modifying the
executor source code of Wisecracker themselves, so as to attack their problem as desired.

The master executor process does not execute any of the tasks because it spends all its
power collecting results from every slave which might send the results in multiple blocks
for efficiency purposes.

Example Application: wisecrackmd5

As part of the Wisecracker framework, a sample application to reverse an MD5 checksum
of a 6-8 character string (such as a password) is provided. The user can learn how to use
the Wisecracker API by looking at the source code of this application and referring to the
API document. Here we explain how to run this application after it has been compiled
into an executable.

Single System Run

Let's say the user wants to reverse the MD5 sum
7e7cf8ad5181911e63d8bfc12d0a0747 which is the MD5 sum for the string
a6cd@F (without the NULL terminating character).
If the user wants to run wisecrackmd5 on a single system, all they need to do is run
the following command at the shell prompt:

$./wisecrackmd5 -N 6 -C alnumspl -M
7e7cf8ad5181911e63d8bfc12d0a0747

Depending on the system properties, this might take a few hours on a system with 8
CPUs to maybe 20 minutes on the Amazon EC2 GPU VM to return the string a6cd@F.

To expedite the run for testing, the user can use the -p option to provide a hint to the
program, like below:

$./wisecrackmd5 -N 6 -C alnumspl -M
7e7cf8ad5181911e63d8bfc12d0a0747 -p a6c

This might take a few seconds to complete as the number of combinations to try
exponentially reduces to 830,584 from 689,869,781,056.

To view all the options provided by the wisecrackmd5 application you can use the -h
option:

$./wisecrackmd5 -h

Multiple System Run

For a multiple system run, the user has to setup MPI to work correctly across the systems.
Each system will need to have OpenCL and MPI installed and also the wisecrackmd5
application present in the same path on both systems.

For Linux and Mac OSX systems, we recommend using MPI over ssh on systems. It is
necessary for ssh to work using public key authentication rather than passwords. For
Windows, we recommend using Microsoft's recommended MPI or using OpenMPI's
instructions for setting up MPI on Windows. Details of setting up MPI are out of the
scope of this document.

Once MPI has been setup, the user should create a host file with the names or IP
addresses of the systems that will be running wisecrackmd5. An example host file that
runs with 1 master and 2 slaves will look like this:

192.168.1.2 slots=2

192.168.1.3

The reason the first system IP address has 2 slots is because the master executor uses 1
extra slot and does not perform computations, and hence we need to run 1 slave on that
machine. The user might choose not to run a slave on the master machine.

To run the wisecrackmd5 application using MPI, the user has to run the following
command for 1 master and 2 slaves (3 processes) with the host file being as above will
look like this:

$ mpiexec -np 3 -hostfile ./path/to/hostfile ./wisecrackmd5
-N 6 -C alnumspl -M 7e7cf8ad5181911e63d8bfc12d0a0747

If we run the above command with 2 Amazon EC2 GPU VMs and number of processes
as 3, it takes about 160-180 seconds to retrieve the string a6cd@F.

If the user runs the MPI compiled application with 1 process, the master executor
automatically switches to single system mode and will perform the computation itself. As
a debugging method, the application can be run with 2 processes and it will run as 1
master and 1 slave which can help debug the communications between processes.

Conclusion

Wisecracker is an easy to use framework for security researchers to perform their own
cryptanalysis by leveraging multiple systems with multi-core processors and GPUs. They
can either use the provided sample applications or can write their own or enhance the
samples themselves. The open source nature of Wisecracker allows the user to have the
freedom to perform research as desired. The presence of cloud computing VMs such as
those provided by Amazon can be leveraged to perform cryptanalysis on demand and
Wisecracker helps the users by making distribution easier across systems.

The source code of wisecracker can be downloaded from https://github.com/
vikasnkumar/wisecracker.
Professional level technical support can be obtained by contacting the developers at
Selective Intellect LLC by emailing them at wisecracker@selectiveintellect.com.

mailto:a6cd@F
https://github.com/vikasnkumar/wisecracker
https://github.com/vikasnkumar/wisecracker
mailto:wisecracker@selectiveintellect.com

